
SWEN 262
Engineering of Software Subsystems

Abstract Factory Pattern



Acme Toy Complex

There are a number of different ways to design 
the system for tracking the toys manufactured by 
lots of different factories. Let’s take a look at 
some of the options...

1. The Acme Toy Complex manufactures several different kinds 

of toys:
a. All toys have a 7-digit unique product code, a name, and a 

manufacturer's suggested retail price (MSRP).
b. Robots walk in circles, play sounds, and can be recharged when their 

batteries die.
c. Dolls have different hair and eye colors and play one of 10 different 

sounds when their string is pulled.:
d. Action Figures have different hair and eye colors and play one of 10 

different sounds when a button is pressed. Action figures may or may 
not come with Kung-Fu GripTM.

2. When a truck arrives at the complex it is loaded with toys 

manufactured at the complex.

3. The product code, name, and MSRP of any toy manufactured 

must be kept in a log.



GoF Abstract 
Factory Structure

Provide an interface for creating families of related or 
dependent objects without specifying their concrete classes.

(Creational)



Toy Factory System Design
As usual, each class has a 
context specific name...

...but its role in the pattern is 
indicated in << guillemets >>.



This diagram shows a truck being loaded with toys as they 
are manufactured by different concrete factories.

Notice that neither the truck nor the Acme Toy Complex 
needs to know or care about the specific toy makers or toys 
that are being created.



GoF Pattern Card

Name: Toy Inventory Management System GoF Pattern: Abstract Factory

Participants

Class Role in Pattern Participant’s Contribution in the context of the application

Toy Abstract Product Defines the state and behavior that all toys have in common including product code, name, and 
manufacturer's suggested retail price (MSRP) and the play method.

ToyFactory Abstract Factory The interface implemented by any class that is capable of manufacturing toys of any kind. The 
specific toys created are determined by the implementing classes.

Robot Concrete Product A robot toy that can be charged to 100%. When the robot is played with, it walks in circles and 
plays its sound (e.g. "Bleep bloop!"). Its charge is depleted by 20% with each play. A robot can be 
recharged.

Doll Concrete Product A doll toy that has a hair color, eye color, and a pull string that will play one of 10 different sounds 
when it is played with.

ActionFigure Concrete Product An action figure toy that has hair color, eye color, and a button that will play one of 10 different 
sounds. Action figures may or may not come equipped with Kung-Fu GripTM.



GoF Pattern Card
Name: Toy Inventory Management System GoF Pattern: Abstract Factory

Participants

Class Role in Pattern Participant’s Contribution in the context of the application

RobotFactory Concrete Factory A factory that builds robots. Each robot has a sound randomly selected from a set of available 
audio clips. Robots are at 0% charge when the are manufactured.

DollFactory Concrete Factory A factory that makes dolls. Each doll is given random hair and eye colors chosen from a set of 
available colors for both. Each doll is also given 10 sounds randomly selected from a large sound 
library.

ActionFigureFactory Concrete Factory A factory that makes action figures. Each action figure is given random hair and eye colors chosen 
from a set of available colors for both. Each action figure is also given 10 sounds randomly 
selected from a large sound library. Action figures may or may not have Kung-Fu GripTM.

AcmeToyComplex Client Uses the various ToyMakers to manufacture toys and load them onto trucks as they arrive. Also 
keeps track of the product code, name, and MSRP of any toys manufactured at the complex.

Deviations from the standard pattern: There is only one abstract product.

Requirements being covered: 1a, 1b, 1c, 1d, 2, 3



Abstract Factory

There are several consequences to 
implementing the abstract factory pattern:
● Concrete classes are isolated.
● Exchanging between products/product 

families is easy.
● Consistency among products is promoted.
● Adding new kinds of products can be 

difficult.

Things to Consider
1. What is the impact of abstract 

factory on the overall design of 
the system?

2. How hard would it be to add a 
new concrete factory that 
makes a new concrete product?3. Why is adding new product 
types difficult? How is this 
similar to Visitor?


